3.681 \(\int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=136 \[ -\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} \sqrt{a+c x^2} \sqrt{d+e x}} \]

[Out]

(-2*Sqrt[-a]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 -
(Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[c]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0565435, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {719, 419} \[ -\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} \sqrt{a+c x^2} \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[a + c*x^2]),x]

[Out]

(-2*Sqrt[-a]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 -
(Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[c]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx &=\frac{\left (2 a \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=-\frac{2 \sqrt{-a} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.243081, size = 186, normalized size = 1.37 \[ \frac{2 i (d+e x) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )}{e \sqrt{a+c x^2} \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[a + c*x^2]),x]

[Out]

((2*I)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x
)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d +
I*Sqrt[a]*e)])/(e*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.264, size = 200, normalized size = 1.5 \begin{align*} 2\,{\frac{ \left ( -\sqrt{-ac}e+cd \right ) \sqrt{ex+d}\sqrt{c{x}^{2}+a}}{ce \left ( ce{x}^{3}+cd{x}^{2}+aex+ad \right ) }{\it EllipticF} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) \sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(-(-a*c)^(1/2)*e+c*d)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)
*e+c*d))^(1/2))*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))
^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)/e/c/(c*e*x^3+c*d*x^2+a*e*x+a*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a} \sqrt{e x + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*sqrt(e*x + d)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a} \sqrt{e x + d}}{c e x^{3} + c d x^{2} + a e x + a d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(e*x + d)/(c*e*x^3 + c*d*x^2 + a*e*x + a*d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + c x^{2}} \sqrt{d + e x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a} \sqrt{e x + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*sqrt(e*x + d)), x)